Part Number Hot Search : 
1N5346B 2SK34 P4SMAJ20 MSMF24C D42C11 MC54F00 G4PH5 ANTX2
Product Description
Full Text Search
 

To Download MCP4911 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 MCP4901/4911/4921
8/10/12-Bit Voltage Output Digital-to-Analog Converter with SPI Interface
Features
* * * * * * * * * * * * MCP4901: 8-Bit Voltage Output DAC MCP4911: 10-Bit Voltage Output DAC MCP4921: 12-Bit Voltage Output DAC Rail-to-Rail Output SPI Interface with 20 MHz Clock Support Simultaneous Latching of the DAC Output with LDAC Pin Fast Settling Time of 4.5 s Selectable Unity or 2x Gain Output External Voltage Reference Input External Multiplier Mode 2.7V to 5.5V Single-Supply Operation Extended Temperature Range: -40C to +125C
Description
The MCP4901/4911/4921 devices are single channel 8-bit, 10-bit and 12-bit buffered voltage output Digital-to-Analog Converters (DACs), respectively. The devices operate from a single 2.7V to 5.5V supply with an SPI compatible Serial Peripheral Interface. The user can configure the full-scale range of the device to be VREF or 2*VREF by setting the gain selection option bit (gain of 1 of 2). The user can shut down the device by setting the Configuration Register bit. In Shutdown mode, most of the internal circuits are turned off for power savings, and the output amplifier is configured to present a known high resistance output load (500 ktypical. The devices include double-buffered registers, allowing synchronous updates of the DAC output using the LDAC pin. These devices also incorporate a Power-on Reset (POR) circuit to ensure reliable powerup. The devices utilize a resistive string architecture, with its inherent advantages of low Differential Non-Linearity (DNL) error and fast settling time. These devices are specified over the extended temperature range (+125C). The devices provide high accuracy and low noise performance for consumer and industrial applications where calibration or compensation of signals (such as temperature, pressure and humidity) are required. The MCP4901/4911/4921 devices are available in the PDIP, SOIC, MSOP and DFN packages.
Applications
* * * * * Set Point or Offset Trimming Precision Selectable Voltage Reference Motor Control Feedback Loop Digitally-Controlled Multiplier/Divider Calibration of Optical Communication Devices
Related Products
P/N MCP4801 MCP4811 MCP4821 MCP4802 MCP4812 MCP4822 MCP4901 MCP4911 MCP4921 MCP4902 MCP4912 MCP4922 DAC Resolution 8 10 12 8 10 12 8 10 12 8 10 12 No. of Channels 1 1 1 2 2 2 1 1 1 2 2 2 External Internal (2.048V) Voltage Reference (VREF)
Package Types
8-Pin PDIP, SOIC, MSOP MCP49x1
VDD 1 CS 2 SCK 3 SDI 4 8 VOUT 7 VSS 6 VREF 5 LDAC
DFN-8 (2x3)*
VDD 1 CS 2 SCK 3 SDI 4 8 VOUT EP 7 VSS 9 6 VREF 5 LDAC
MCP4901: 8-bit single DAC MCP4911: 10-bit single DAC MCP4921: 12-bit single DAC
* Includes Exposed Thermal Pad (EP); see Table 3-1.
Note: The products listed here have similar AC/DC performances.
2010 Microchip Technology Inc.
DS22248A-page 1
MCP4901/4911/4921
Block Diagram
LDAC CS SDI SCK
Interface Logic Power-on Reset Input Register VDD
VSS
DAC Register
VREF Buffer Output Op Amp Output Logic
String DAC
Gain Logic
VOUT
DS22248A-page 2
2010 Microchip Technology Inc.
MCP4901/4911/4921
1.0 ELECTRICAL CHARACTERISTICS
Notice: Stresses above those listed under "Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.
Absolute Maximum Ratings
VDD ............................................................................................................. 6.5V All inputs and outputs w.r.t ................VSS -0.3V to VDD+0.3V Current at Input Pins ....................................................2 mA Current at Supply Pins ...............................................50 mA Current at Output Pins ...............................................25 mA Storage temperature .....................................-65C to +150C Ambient temp. with power applied ................-55C to +125C ESD protection on all pins 4 kV (HBM), 400V (MM) Maximum Junction Temperature (TJ) . .........................+150C
ELECTRICAL CHARACTERISTICS
Electrical Specifications: Unless otherwise indicated, VDD = 5V, VSS = 0V, VREF = 2.048V, Output Buffer Gain (G) = 2x, RL = 5 k to GND, CL = 100 pF TA = -40 to +85C. Typical values are at +25C. Parameters Power Requirements Operating Voltage Supply Current VDD IDD 2.7 -- -- -- 175 125 5.5 350 250 A A VDD = 5V VDD = 3V VREF input is unbuffered, all digital inputs are grounded, all analog outputs (VOUT) are unloaded. Code = 0x000h Power-on Reset circuit remains on Sym Min Typ Max Units Conditions
Software Shutdown Current ISHDN_SW Power-On-Reset Threshold VPOR DC Accuracy MCP4901 Resolution INL Error DNL MCP4911 Resolution INL Error DNL MCP4921 Resolution INL Error DNL Note 1: 2: n INL DNL n INL DNL n INL DNL
-- --
3.3 2.0
6 --
A V
8 -1 -0.5 10 -3.5 -0.5 12 -12 -0.75
-- 0.125 0.1 -- 0.5 0.1 -- 2 0.2
-- 1 +0.5 -- 3.5 +0.5 -- 12 +0.75
Bits LSb LSb Bits LSb LSb Bits LSb LSb Note 1 Note 1 Note 1
Guaranteed monotonic by design over all codes. This parameter is ensured by design, and not 100% tested.
2010 Microchip Technology Inc.
DS22248A-page 3
MCP4901/4911/4921
ELECTRICAL CHARACTERISTICS (CONTINUED)
Electrical Specifications: Unless otherwise indicated, VDD = 5V, VSS = 0V, VREF = 2.048V, Output Buffer Gain (G) = 2x, RL = 5 k to GND, CL = 100 pF TA = -40 to +85C. Typical values are at +25C. Parameters Offset Error Offset Error Temperature Coefficient Gain Error Gain Error Temperature Coefficient Input Amplifier (VREF Input) Input Range - Buffered Mode Input Range - Unbuffered Mode Input Impedance Input Capacitance - Unbuffered Mode Multiplier Mode -3 dB Bandwidth VREF VREF RVREF CVREF fVREF fVREF Multiplier Mode - Total Harmonic Distortion Output Amplifier Output Swing VOUT -- 0.01 to VDD - 0.04 66 0.55 15 4.5 -- V Accuracy is better than 1 LSb for VOUT = 10 mV to (VDD - 40 mV) THDVREF 0.040 0 -- -- -- -- -- -- -- 165 7 450 400 -73 VDD - 0.040 VDD -- -- -- -- -- V V k pF kHz kHz dB VREF = 2.5V 0.2Vp-p, Unbuffered, G = 1 VREF = 2.5V 0.2 Vp-p, Unbuffered, G = 2 VREF = 2.5V 0.2Vp-p, Frequency = 1 kHz Note 2 Code = 2048 VREF = 0.2 Vp-p, f = 100 Hz and 1 kHz Unbuffered Mode Sym VOS VOS/C gE G/C Min -- -- -- -- -- Typ 0.02 0.16 -0.44 -0.10 -3 Max 1 -- -- 1 -- Units % of FSR ppm/C ppm/C % of FSR ppm/C Conditions Code = 0x000h -45C to 25C +25C to 85C Code = 0xFFFh, not including offset error
Phase Margin Slew Rate Short Circuit Current Settling Time
m SR ISC tsettling
-- -- -- --
-- -- 24 --
Degrees V/s mA s Within 1/2 LSB of final value from 1/4 to 3/4 full-scale range
Dynamic Performance (Note 2) DAC-to-DAC Crosstalk Major Code Transition Glitch Digital Feedthrough Analog Crosstalk Note 1: 2: -- -- -- -- 10 45 10 10 -- -- -- -- nV-s nV-s nV-s nV-s 1 LSB change around major carry (0111...1111 to 1000...0000)
Guaranteed monotonic by design over all codes. This parameter is ensured by design, and not 100% tested.
DS22248A-page 4
2010 Microchip Technology Inc.
MCP4901/4911/4921
ELECTRICAL CHARACTERISTIC WITH EXTENDED TEMPERATURE
Electrical Specifications: Unless otherwise indicated, VDD = 5V, VSS = 0V, VREF = 2.048V, Output Buffer Gain (G) = 2x, RL = 5 k to GND, CL = 100 pF. Typical values are at +125C by characterization or simulation. Parameters Power Requirements Input Voltage Input Current VDD IDD 2.7 -- -- 200 5.5 -- A VREF input is unbuffered, all digital inputs are grounded, all analog outputs (VOUT) are unloaded. Code = 0x000h Sym Min Typ Max Units Conditions
Software Shutdown Current ISHDN_SW Power-on Reset Threshold VPOR DC Accuracy MCP4901 Resolution INL Error DNL MCP4911 Resolution INL Error DNL MCP4921 Resolution INL Error DNL
Offset Error
-- --
5 1.85
-- --
A V
n INL DNL n INL DNL n INL DNL VOS VOS/C gE G/C
8
-- 0.25 0.2
--
Bits LSb LSb Note 1
10
-- 1 0.2
--
Bits LSb LSb Note 1
12
-- 4 0.25
--
Bits LSb LSb Note 1 Code = 0x000h +25C to +125C Code = 0xFFFh, not including offset error
-- -- -- --
0.02 -5 -0.10 -3
-- -- -- --
% of FSR ppm/C % of FSR ppm/C
Offset Error Temperature Coefficient Gain Error Gain Error Temperature Coefficient Input Amplifier (VREF Input) Input Range - Buffered Mode
VREF
--
0.040 to VDD0.040 -- 174 7 450 400
--
V
Note 1 Code = 2048, VREF = 0.2 Vp-p, f = 100 Hz and 1 kHz
Input Range - Unbuffered Mode Input Impedance Input Capacitance - Unbuffered Mode Multiplying Mode -3 dB Bandwidth
VREF RVREF CVREF fVREF fVREF
0 -- -- -- --
VDD -- -- -- --
V k pF kHz kHz VREF = 2.5V 0.1 Vp-p, Unbuffered, G = 1x VREF = 2.5V 0.1 Vp-p, Unbuffered, G = 2x Unbuffered Mode
Note 1: 2:
Guaranteed monotonic by design over all codes. This parameter is ensured by design, and not 100% tested.
2010 Microchip Technology Inc.
DS22248A-page 5
MCP4901/4911/4921
ELECTRICAL CHARACTERISTIC WITH EXTENDED TEMPERATURE (CONTINUED)
Electrical Specifications: Unless otherwise indicated, VDD = 5V, VSS = 0V, VREF = 2.048V, Output Buffer Gain (G) = 2x, RL = 5 k to GND, CL = 100 pF. Typical values are at +125C by characterization or simulation. Parameters Multiplying Mode - Total Harmonic Distortion Output Amplifier Output Swing VOUT -- 0.01 to VDD - 0.04 66 0.55 17 4.5 -- V Accuracy is better than 1 LSb for VOUT = 10 mV to (VDD - 40 mV) Sym THDVREF Min -- Typ -- Max -- Units dB Conditions VREF = 2.5V 0.1Vp-p, Frequency = 1 kHz
Phase Margin Slew Rate Short Circuit Current Settling Time
m
SR ISC tsettling
-- -- -- --
-- -- -- --
Degrees V/s mA s Within 1/2 LSB of final value from 1/4 to 3/4 full-scale range 1 LSB change around major carry (0111...1111 to 1000...0000)
Dynamic Performance (Note 2) Major Code Transition Glitch Digital Feedthrough Note 1: 2: -- -- 45 10 -- -- nV-s nV-s
Guaranteed monotonic by design over all codes. This parameter is ensured by design, and not 100% tested.
DS22248A-page 6
2010 Microchip Technology Inc.
MCP4901/4911/4921
AC CHARACTERISTICS (SPI TIMING SPECIFICATIONS)
Electrical Specifications: Unless otherwise indicated, VDD= 2.7V - 5.5V, TA= -40 to +125C. Typical values are at +25C. Parameters Schmitt Trigger High Level Input Voltage (All digital input pins) Schmitt Trigger Low Level Input Voltage (All digital input pins) Hysteresis of Schmitt Trigger Inputs Input Leakage Current Digital Pin Capacitance (All inputs/outputs) Clock Frequency Clock High Time Clock Low Time CS Fall to First Rising CLK Edge Data Input Setup Time Data Input Hold Time SCK Rise to CS Rise Hold Time CS High Time LDAC Pulse Width LDAC Setup Time SCK Idle Time before CS Fall Note 1: Sym VIH Min 0.7 VDD Typ -- Max -- Units V Conditions
VIL VHYS ILEAKAGE CIN, COUT FCLK tHI tLO tCSSR tSU tHD tCHS tCSH tLD tLS tIDLE
-- -- -1 -- -- 15 15 40 15 10 15 15 100 40 40
-- 0.05 VDD -- 10 -- -- -- -- -- -- -- -- -- -- --
0.2 VDD -- 1 -- 20 -- -- -- -- -- -- -- -- -- --
V
A pF MHz ns ns ns ns ns ns ns ns ns ns
LDAC = CS = SDI = SCK = VREF = VDD or VSS VDD = 5.0V, TA = +25C, fCLK = 1 MHz (Note 1) TA = +25C (Note 1) Note 1 Note 1 Applies only when CS falls with CLK high (Note 1) Note 1 Note 1 Note 1 Note 1 Note 1 Note 1 Note 1
This parameter is ensured by design and not 100% tested.
tCSH CS tIDLE tCSSR Mode 1,1 SCK Mode 0,0 tSU SI MSB in LSB in tHD tHI tLO tCHS
LDAC tLS tLD
FIGURE 1-1:
SPI Input Timing Data.
2010 Microchip Technology Inc.
DS22248A-page 7
MCP4901/4911/4921
TEMPERATURE CHARACTERISTICS
Electrical Specifications: Unless otherwise indicated, VDD = +2.7V to +5.5V, VSS = GND. Parameters Temperature Ranges Specified Temperature Range Operating Temperature Range Storage Temperature Range Thermal Package Resistances Thermal Resistance, 8L-DFN (2 x 3) Thermal Resistance, 8L-PDIP Thermal Resistance, 8L-SOIC Thermal Resistance, 8L-MSOP Note 1: JA JA JA JA -- -- -- -- 68 90 150 211 -- -- -- -- C/W C/W C/W C/W TA TA TA -40 -40 -65 -- -- -- +125 +125 +150 C C C Note 1 Sym Min Typ Max Units Conditions
The MCP4901/4911/4921 devices operate over this extended temperature range, but with reduced performance. Operation in this range must not cause TJ to exceed the maximum junction temperature of 150C.
DS22248A-page 8
2010 Microchip Technology Inc.
MCP4901/4911/4921
2.0
Note:
TYPICAL PERFORMANCE CURVES
The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.
Note: Unless otherwise indicated, TA = +25C, VDD = 5V, VSS = 0V, VREF = 2.048V, Gain = 2x, RL = 5 k, CL = 100 pF.
0.3 Absolute DNL (LSB) 0.2 DNL (LSB) 0.1 0 -0.1 -0.2 -0.3 0 1024 2048 Code (Decimal) 3072 4096 0.0766 0.0764 0.0762 0.076 0.0758 0.0756 0.0754 0.0752 0.075 -40 -20 0 20 40 60 80 100 120
Ambient Temperature (C)
FIGURE 2-1:
DNL vs. Code (MCP4921).
FIGURE 2-4: Absolute DNL vs. Temperature (MCP4921).
0.35 Absolute DNL (LSB) 0.3 0.25 0.2 0.15 0.1 0.05 0 1 2 3 4 5
0.2
0.1 DNL (LSB)
0
-0.1
-0.2 0 1024 2048 3072
125C 85C
4096
25C
Code (Decimal)
Voltage Reference (V)
FIGURE 2-2: DNL vs. Code and Temperature (MCP4921).
0.4 0.3 0.2 DNL (LSB) 0.1 0 -0.1 -0.2 -0.3 -0.4 0 1024 2048
1
FIGURE 2-5: Absolute DNL vs. Voltage Reference (MCP4921).
5 4 3 2 1 0 -1 -2 -3 -4 -5 0 1024
Ambient Temperature
125C
85
25
3072
2 3 4
4096
5.5
INL (LSB)
Code (Decimal)
2048 3072 Code (Decimal)
4096
FIGURE 2-3: DNL vs. Code and VREF, Gain=1 (MCP4921).
FIGURE 2-6: INL vs. Code and Temperature (MCP4921).
2010 Microchip Technology Inc.
DS22248A-page 9
MCP4901/4911/4921
Note: Unless otherwise indicated, TA = +25C, VDD = 5V, VSS = 0V, VREF = 2.048V, Gain = 2, RL = 5 k, CL = 100 pF.
2.5 Absolute INL (LSB) 2 1.5 1 0.5 0 -40 -20 0 20 40 60 80 100 120 INL (LSB) 2 0 -2 -4 -6 0 1024 2048 Code (Decimal) 3072 4096
Ambient Temperature (C)
FIGURE 2-7: Absolute INL vs. Temperature (MCP4921).
FIGURE 2-10:
Note:
INL vs. Code (MCP4921).
Single device graph (Figure 2-10) for illustration of 64 code effect.
3
0.2 Temp = - 40oC to +125oC 0.1 DNL (LSB)
Absolute INL (LSB)
2.5 2 1.5 1 0.5 0
0
-0.1
1
2
3
4
5
-0.2 0 128 256 384 512 640 Code 768 896 1024
Voltage Reference (V)
FIGURE 2-8: (MCP4921).
3 2 1 INL (LSB)
Absolute INL vs. VREF
FIGURE 2-11: DNL vs. Code and Temperature (MCP4911).
VREF
1 2 3 4 5.5
1.5 0.5 INL (LSB) -0.5 -1.5 -2.5
- 40 C
o o
85 C
0 -1 -2 -3 -4 0 1024 2048 3072 Code (Decimal) 4096
25 C
o
125 C
o
-3.5 0 128 256 384 512 640 Code 768 896 1024
FIGURE 2-9: (MCP4921).
INL vs. Code and VREF
FIGURE 2-12: INL vs. Code and Temperature (MCP4911).
DS22248A-page 10
2010 Microchip Technology Inc.
MCP4901/4911/4921
Note: Unless otherwise indicated, TA = +25C, VDD = 5V, VSS = 0V, VREF = 2.048V, Gain = 2, RL = 5 k, CL = 100 pF.
0.06 0.04
Temp = -40oC to +125oC
18 16 14 Occurrence 12 10 8 6 4 2 0 143 145 147 149 151 153 155 157 159 161 163 165 167
DNL (LSB)
0.02 0 -0.02 -0.04 -0.06 0 32 64 96 128 160 192 224 256 Code
IDD (A)
FIGURE 2-13: DNL vs. Code and Temperature (MCP4901).
0.5
-40 C to +85 C
o o
FIGURE 2-16: 2.7V).
9 8 7 Occurrence 6 5 4 3 2 1 0
IDD Histogram (VDD =
0.25 INL (LSB)
0
-0.25
125 C
o
-0.5 0 32 64 96 128 160 Code 192 224 256
151 156 161 166 171 176 181 186 191 196 201 IDD (A)
FIGURE 2-14: INL vs. Code and Temperature (MCP4901).
210 190 IDD (A) 170 150 130 110 -40 -20 0 20 40 60 80 100 120 Ambient Temperature (C)
5.5V 5.0V 4.0V 3.0V 2.7V VDD
FIGURE 2-17: 5.0V).
IDD Histogram (VDD =
FIGURE 2-15: VDD.
IDD vs. Temperature and
2010 Microchip Technology Inc.
DS22248A-page 11
MCP4901/4911/4921
Note: Unless otherwise indicated, TA = +25C, VDD = 5V, VSS = 0V, VREF = 2.048V, Gain = 2, RL = 5 k, CL = 100 pF.
6
5.5V VDD 5.5V 5.0V
4 VIN Hi Threshold (V)
5.0V 4.0V 3.0V 2.7V VDD
5 ISHDN_SW (A) 4 3 2 1 0 -40 -20 0 20 40 60 80 100 120 Ambient Temperature (C)
3.5 3 2.5 2 1.5 1 -40 -20 0 20 40 60 80 100 120 Ambient Temperature (C)
4.0V
3.0V 2.7V
FIGURE 2-18: Shutdown Current vs. Temperature and VDD.
0.12
FIGURE 2-21: VIN High Threshold vs. Temperature and VDD.
1.6 VIN Low Threshold (V) 1.5 1.4 1.3 1.2 1.1 1 0.9 0.8 -40 -20 0 20 40 60 80 100 120 Ambient Temperature (C)
3.0V 2.7V 4.0V
VDD 5.5V 5.0V
0.1 Offset Error (%) 0.08 0.06 0.04 0.02 0 -0.02 -40 -20 0 20 40 60 80 100 120 Ambient Temperature (C)
5.0V 4.0V 3.0V 2.7V VDD
5.5V
FIGURE 2-19: and VDD.
-0.08
Offset Error vs.Temperature
FIGURE 2-22: VIN Low Threshold vs. Temperature and VDD.
VDD 5.5V
Gain Error (%)
-0.1
5.0V
-0.12
4.0V 3.0V 2.7V
-0.14
-0.16 -40 -20 0 20 40 60 80 100 120 Ambient Temperature (C)
FIGURE 2-20: and VDD.
Gain Error vs. Temperature
DS22248A-page 12
2010 Microchip Technology Inc.
MCP4901/4911/4921
Note: Unless otherwise indicated, TA = +25C, VDD = 5V, VSS = 0V, VREF = 2.048V, Gain = 2, RL = 5 k, CL = 100 pF.
2.5 2.25 2 1.75 1.5 1.25 1 0.75 0.5 0.25 0 -40 -20 0 20 40 60 80 100 120 Ambient Temperature (C) 0.0045 VOUT_LOW Limit (Y-AVSS)(V) 0.004 0.0035 0.003
5.0V VDD 5.5V
VDD 5.5V 5.0V 4.0V 3.0V 2.7V
VIN_SPI Hysteresis (V)
0.0025 0.002 0.0015 -40 -20 0 20 40 60 80 100 120 Ambient Temperature (C)
4.0V 3.0V 2.7V
FIGURE 2-23: Input Hysteresis vs. Temperature and VDD.
175 VREF_UNBUFFERED Impedance (kOhm)
FIGURE 2-26: VOUT Low Limit vs. Temperature and VDD.
18 IOUT_HI_SHORTED (mA)
5.5V 2.7V VDD VDD 5.5V 5.0V 4.0V 3.0V 2.7V
17 16 15 14 13 12 11 10
170
165
160
155 -40 -20 0 20 40 60 80 100 120 Ambient Temperature (C)
-40
-20
0 20 40 60 80 100 120 Ambient Temperature (C)
FIGURE 2-24: VREF Input Impedance vs. Temperature and VDD.
0.045 VOUT_HI Limit (VDD-Y)(V) 0.04 0.035 0.03 0.025 0.02 0.015 0.01 0.005 0 -40 -20 0 20 40 60 80 100 120 Ambient Temperature (C)
5.5V 5.0V 4.0V
FIGURE 2-27: IOUT High Short vs. Temperature and VDD.
6.0 5.0
VREF=4.0
VOUT (V)
4.0
Output Shorted to VDD
3.0V 2.7V VDD
3.0 2.0 1.0 0.0 0 2 4 6 8 10 IOUT (mA) 12 14 16
Output Shorted to VSS
FIGURE 2-25: VOUT High Limit vs. Temperature and VDD.
FIGURE 2-28:
IOUT vs. VOUT. Gain = 1.
2010 Microchip Technology Inc.
DS22248A-page 13
MCP4901/4911/4921
Note: Unless otherwise indicated, TA = +25C, VDD = 5V, VSS = 0V, VREF = 2.048V, Gain = 2, RL = 5 k, CL = 100 pF.
VOUT VOUT SCK LDAC Time (1 s/div) LDAC Time (1 s/div)
FIGURE 2-29:
VOUT Rise Time
FIGURE 2-32:
VOUT Rise Time
VOUT VOUT SCK SCK LDAC Time (1 s/div) LDAC Time (1 s/div)
FIGURE 2-30:
VOUT Fall Time.
FIGURE 2-33: Shutdown.
VOUT Rise Time Exit
VOUT SCK
LDAC Time (1 s/div)
Ripple Rejection (dB)
Frequency (Hz)
FIGURE 2-31:
VOUT Rise Time
FIGURE 2-34:
PSRR vs. Frequency.
DS22248A-page 14
2010 Microchip Technology Inc.
MCP4901/4911/4921
Note: Unless otherwise indicated, TA = +25C, VDD = 5V, VSS = 0V, VREF = 2.50V, Gain = 2, RL = 5 k, CL = 100 pF.
0
0 -2 Attenuation (dB) -4 -6 -8 -10 -12 100
D= D= D= D= D= D= D= D= D= D= D= D= D= D= D= 160 416 672 928 1184 1440 1696 1952 2208 2464 2720 2976 3232 3488 3744
-45 qVREF - qVOUT
-90
-135
Frequency (kHz)
1,000
-180 100
D= D= D= D= D= D= D= D= D= D= D= D= D= D= D=
160 416 672 928 1184 1440 1696 1952 2208 2464 2720 2976 3232 3488 3744
Frequency (kHz)
1,000
FIGURE 2-35:
Multiplier Mode Bandwidth.
FIGURE 2-37:
Phase Shift.
Figure 2-35 calculation: Attenuation (dB) = 20 log (VOUT/VREF) - 20 log (G(D/4096))
600 580 560 540 520 500 480 460 440 420 400
Bandwidth (kHz)
G=1 G=2
FIGURE 2-36: Codes.
2010 Microchip Technology Inc.
44 37 88 34 32 32 76 29 20 27 64 24 08 22 52 19 96 16 40 14 84 11 8 92 2 67 6 41 0 16
Worst Case Codes (decimal)
-3 db Bandwidth vs. Worst
DS22248A-page 15
MCP4901/4911/4921
NOTES:
DS22248A-page 16
2010 Microchip Technology Inc.
MCP4901/4911/4921
3.0 PIN DESCRIPTIONS
PIN FUNCTION TABLE
DFN 1 2 3 4 5 6 7 8 9 Symbol VDD CS SCK SDI LDAC VREF VSS VOUT EP Chip Select Input Serial Clock Input Serial Data Input DAC Output Synchronization Input. This pin is used to transfer the input register (DAC settings) to the output register (VOUT) Voltage Reference Input Ground reference point for all circuitry on the device DAC Analog Output Exposed Thermal Pad. This pad must be connected to VSS in application Description Supply Voltage Input (2.7V to 5.5V) The descriptions of the pins are listed in Table 3-1.
TABLE 3-1:
1 2 3 4 5 6 7 8
--
PDIP, MSOP, SOIC
3.1
Supply Voltage Pins (VDD, VSS)
3.5
Latch DAC Input (LDAC)
VDD is the positive supply voltage input pin. The input supply voltage is relative to VSS and can range from 2.7V to 5.5V. The power supply at the VDD pin should be as clean as possible for good DAC performance. It is recommended to use an appropriate bypass capacitor of about 0.1 F (ceramic) to ground. An additional 10 F capacitor (tantalum) in parallel is also recommended to further attenuate high-frequency noise present in application boards. VSS is the analog ground pin and the current return path of the device. The user must connect the VSS pin to a ground plane through a low-impedance connection. If an analog ground path is available in the application Printed Circuit Board (PCB), it is highly recommended that the VSS pin be tied to the analog ground path or isolated within an analog ground plane of the circuit board.
The LDAC (latch DAC synchronization input) pin is used to transfer the input latch register to the DAC register (output latches, VOUT). When this pin is low, VOUT is updated with input register content. This pin can be tied to low (VSS) if the VOUT update is desired at the rising edge of the CS pin. This pin can be driven by an external control device such as an MCU I/O pin.
3.6
Analog Output (VOUT)
VOUT is the DAC analog output pin. The DAC output has an output amplifier. The full-scale range of the DAC output is from VSS to G*VREF, where G is the gain selection option (1x or 2x). The DAC analog output cannot go higher than the supply voltage (VDD).
3.7
Voltage Reference Input (VREF)
3.2
Chip Select (CS)
CS is the chip select input, which requires an active-low signal to enable serial clock and data functions.
VREF is the voltage reference input for the device. The reference on this pin is utilized to set the reference voltage on the string DAC. The input voltage can range from VSS to VDD. This pin can be tied to VDD.
3.3
Serial Clock Input (SCK)
3.8
Exposed Thermal Pad (EP)
SCK is the SPI compatible serial clock input.
3.4
Serial Data Input (SDI)
There is an internal electrical connection between the Exposed Thermal Pad (EP) and the VSS pin. They must be connected to the same potential on the PCB.
SDI is the SPI compatible serial data input.
2010 Microchip Technology Inc.
DS22248A-page 17
MCP4901/4911/4921
NOTES:
DS22248A-page 18
2010 Microchip Technology Inc.
MCP4901/4911/4921
4.0 GENERAL OVERVIEW
TABLE 4-1:
Device MCP4901 (n = 8)
LSb OF EACH DEVICE
Gain Selection LSb Size
The MCP4901, MCP4911 and MCP4921 are single channel voltage output 8-bit, 10-bit and 12-bit DAC devices, respectively. These devices include a VREF input buffer, a rail-to-rail output amplifier, shutdown and reset management circuitry. The devices use an SPI serial communication interface and operate with a single-supply voltage from 2.7V to 5.5V. The DAC input coding of these devices is straight binary. Equation 4-1 shows the DAC analog output voltage calculation.
1x VREF/256 2x (2*VREF)/256 MCP4911 1x VREF/1024 (n = 10) 2x (2*VREF)/1024 MCP4921 1x VREF/4096 (n = 12) 2x (2*VREF)/4096 where VREF is the external voltage reference.
EQUATION 4-1:
Where: VREF Dn G = = = = = = = = =
VOUT = ------------------------------ G n 2
ANALOG OUTPUT VOLTAGE (VOUT) VREF Dn
4.1
4.1.1
DC Accuracy
INL ACCURACY
n
EXternal voltage reference DAC input code Gain Selection 2 for bit = 0 1 for bit = 1 DAC Resolution 8 for MCP4901 10 for MCP4911 12 for MCP4912
Integral Non-Linearity (INL) error is the maximum deviation between an actual code transition point and its corresponding ideal transition point, after offset and gain errors have been removed. The two endpoints (from 0x000 and 0xFFF) method is used for the calculation. Figure 4-1 shows the details. A positive INL error represents transition(s) later than ideal. A negative INL error represents transition(s) earlier than ideal.
INL < 0 111 Actual Transfer Function
The ideal output range of each device is: * MCP4901 (n = 8) (a) 0V to 255/256*VREF when gain setting = 1x. (b) 0V to 255/256*2*VREF when gain setting = 2x. * MCP4911 (n = 10) (a) 0V to 1023/1024*VREF when gain setting = 1x. (b) 0V to 1023/1024*2*VREF when gain setting = 2x. * MCP4921 (n = 12) (a) 0V to 4095/4096*VREF when gain setting = 1x. (b) 0V to 4095/4096*2*VREF when gain setting = 2x. Note: See the output swing voltage specification in Section 1.0 "Electrical Characteristics". Digital Input Code
110 101 100 011 010 001 000
Ideal Transfer Function
INL < 0 DAC Output
FIGURE 4-1: 4.1.2
Example for INL Error.
1 LSb is the ideal voltage difference between two successive codes. Table 4-1 illustrates the LSb calculation of each device.
DNL ACCURACY
A Differential Non-Linearity (DNL) error is the measure of variations in code widths from the ideal code width. A DNL error of zero indicates that every code is exactly 1 LSB wide.
2010 Microchip Technology Inc.
DS22248A-page 19
MCP4901/4911/4921
4.2.2 VOLTAGE REFERENCE AMPLIFIER
The input buffer amplifier for the MCP4901/4911/4921 devices provides low offset voltage and low noise. A Configuration bit for each DAC allows the VREF input to bypass the VREF input buffer amplifier, achieving Buffered or Unbuffered mode. Buffered mode provides a very high input impedance, with only minor limitations on the input range and frequency response. Unbuffered mode provides a wide input range (0V to VDD), with a typical input impedance of 165 k with 7 pF. Unbuffered mode ( = 0) is the default configuration.
111 110 101 Digital Input Code 100 011 010 001 000 Narrow Code, < 1 LSb DAC Output Wide Code, > 1 LSb Actual Transfer Function Ideal Transfer Function
4.2.3
POWER-ON RESET CIRCUIT
FIGURE 4-2: 4.1.3
Example for DNL Accuracy.
OFFSET ERROR
The internal Power-on Reset (POR) circuit monitors the power supply voltage (VDD) during device operation. The circuit also ensures that the device powers up with high output impedance ( = 0, typically 500 k. The devices will continue to have a highimpedance output until a valid write command is received, and the LDAC pin meets the input low threshold. If the power supply voltage is less than the POR threshold (VPOR = 2.0V, typical), the device will be held in its Reset state. It will remain in that state until VDD > VPOR and a subsequent write command is received. Figure 4-3 shows a typical power supply transient pulse and the duration required to cause a reset to occur, as well as the relationship between the duration and trip voltage. A 0.1 F decoupling capacitor, mounted as close as possible to the VDD pin, can provide additional transient immunity.
An offset error is the deviation from zero voltage output when the digital input code is zero.
4.1.4
GAIN ERROR
A gain error is the deviation from the ideal output, VREF- 1 LSB, excluding the effects of offset error.
4.2
4.2.1
Circuit Descriptions
OUTPUT AMPLIFIER
Supply Voltages
The DAC's output is buffered with a low-power, precision CMOS amplifier. This amplifier provides low offset voltage and low noise. The output stage enables the device to operate with output voltages close to the power supply rails. Refer to Section 1.0 "Electrical Characteristics" for the analog output voltage range and load conditions. In addition to resistive load driving capability, the amplifier will also drive high capacitive loads without oscillation. The amplifier's strong output allows VOUT to be used as a programmable voltage reference in a system. Selecting a gain of 2 reduces the bandwidth of the amplifier in Multiplying mode. Refer to Section 1.0 "Electrical Characteristics" for the Multiplying mode bandwidth for given load conditions.
5V VPOR VDD - VPOR Transient Duration
Time 10
Transient Duration (s)
TA
=
8 6 4 2
Transients Transients below
above the
the
0
4.2.1.1
Programmable Gain Block FIGURE 4-3:
1
2 3 4 VDD - VPOR (V)
5
The rail-to-rail output amplifier has two configurable gain options: a gain of 1x ( = 1) or a gain of 2x ( = 0). The default value is a gain of 2x ( = 0).
Typical Transient Response.
DS22248A-page 20
2010 Microchip Technology Inc.
MCP4901/4911/4921
4.2.4 SHUTDOWN MODE
OP Amp VOUT
The user can shut down the device by using a software command. During Shutdown mode, most of the internal circuits, including the output amplifier, are turned off for power savings. The serial interface remains active, thus allowing a write command to bring the device out of Shutdown mode. There will be no analog output at the VOUT pin, and the VOUT pin is internally switched to a known resistive load (500 k typical. Figure 4-4 shows the analog output stage during Shutdown mode. The device will remain in Shutdown mode until it receives a write command with bit = 1 and the bit is latched into the device. When the device is changed from Shutdown to Active mode, the output settling time takes less than 10 s, but more than the standard active mode settling time (4.5 s).
Power-Down Control Circuit Resistive Load Resistive String DAC
500 k
FIGURE 4-4: Mode.
Output Stage for Shutdown
2010 Microchip Technology Inc.
DS22248A-page 21
MCP4901/4911/4921
NOTES:
DS22248A-page 22
2010 Microchip Technology Inc.
MCP4901/4911/4921
5.0
5.1
SERIAL INTERFACE
Overview
5.2
Write Command
The MCP4901/4911/4921 devices are designed to interface directly with the Serial Peripheral Interface (SPI) port, which is available on many microcontrollers and supports Mode 0,0 and Mode 1,1. Commands and data are sent to the device via the SDI pin, with data being clocked-in on the rising edge of SCK. The communications are unidirectional, thus the data cannot be read out of the MCP4901/4911/4921. The CS pin must be held low for the duration of a write command. The write command consists of 16 bits and is used to configure the DAC's control and data latches. Register 5-1 through Register 5-3 detail the input register that is used to configure and load the DAC register for each device. Figure 5-1 through Figure 5-3 show the write command for each device. Refer to Figure 1-1 and the SPI Timing Specifications Table for detailed input and output timing specifications for both Mode 0,0 and Mode 1,1 operation.
The write command is initiated by driving the CS pin low, followed by clocking the four Configuration bits and the 12 data bits into the SDI pin on the rising edge of SCK. The CS pin is then raised, causing the data to be latched into the DAC's input register. The MCP4901/4911/4921 utilizes a double-buffered latch structure to allow the analog output to be synchronized with the LDAC pin, if desired. By bringing the LDAC pin down to a low state, the content stored in the DAC's input register is transferred into the DAC's output register (VOUT), and VOUT is updated. All writes to the MCP4901/4911/4921 devices are 16-bit words. Any clocks past the 16th clock will be ignored. The Most Significant 4 bits are Configuration bits. The remaining 12 bits are data bits. No data can be transferred into the device with CS high. This transfer will only occur if 16 clocks have been transferred into the device. If the rising edge of CS occurs prior to that, shifting of data into the input register will be aborted.
2010 Microchip Technology Inc.
DS22248A-page 23
MCP4901/4911/4921
REGISTER 5-1:
W-x 0 bit 15 W-x BUF W-x GA
WRITE COMMAND REGISTER FOR MCP4921 (12-BIT DAC)
W-0 SHDN W-x D11 W-x D10 W-x D9 W-x D8 W-x D7 W-x D6 W-x D5 W-x D4 W-x D3 W-x D2 W-x D1 W-x D0 bit 0
REGISTER 5-2:
W-x 0 bit 15 W-x BUF W-x GA
WRITE COMMAND REGISTER FOR MCP4911 (10-BIT DAC)
W-0 SHDN W-x D9 W-x D8 W-x D7 W-x D6 W-x D5 W-x D4 W-x D3 W-x D2 W-x D1 W-x D0 W-x x W-x x bit 0
REGISTER 5-3:
W-x 0 bit 15 Where: bit 15 bit 14 W-x BUF W-x GA
WRITE COMMAND REGISTER FOR MCP4901 (8-BIT DAC)
W-0 SHDN W-x D7 W-x D6 W-x D5 W-x D4 W-x D3 W-x D2 W-x D1 W-x D0 W-x x W-x x W-x x W-x x bit 0
0 = Write to DAC register 1 = Ignore this command BUF: VREF Input Buffer Control bit 1 = Buffered 0 = Unbuffered GA: Output Gain Selection bit 1 = 1x (VOUT = VREF * D/4096) 0 = 2x (VOUT = 2 * VREF * D/4096) SHDN: Output Shutdown Control bit 1 = Active mode operation. VOUT is available. 0 = Shutdown the device. Analog output is not available. VOUT pin is connected to 500 ktypical) D11:D0: DAC Input Data bits. Bit x is ignored.
bit 13
bit 12
bit 11-0
Legend R = Readable bit -n = Value at POR W = Writable bit 1 = bit is set U = Unimplemented bit, read as `0' 0 = bit is cleared x = bit is unknown
DS22248A-page 24
2010 Microchip Technology Inc.
MCP4901/4911/4921
CS 0 SCK config bits SDI 0 12 data bits 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 (Mode 1,1) (Mode 0,0)
BUF GA SHDN D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
LDAC
VOUT
FIGURE 5-1:
Write Command for MCP4921 (12-bit DAC).
CS 0 SCK config bits SDI 0 BUF GA SHDN D9 12 data bits D8 D7 D6 D5 D4 D3 D2 D1 D0 X X 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 (Mode 1,1) (Mode 0,0)
LDAC
VOUT
FIGURE 5-2:
Write Command for MCP4911 (10-bit DAC). Note: X are don't care bits.
CS 0 SCK config bits SDI 0 BUF GA SHDN D7 12 data bits D6 D5 D4 D3 D2 D1 D0 X X X X 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 (Mode 1,1) (Mode 0,0)
LDAC
VOUT
FIGURE 5-3:
Write Command for MCP4901(8-bit DAC). Note: X are don't care bits.
2010 Microchip Technology Inc.
DS22248A-page 25
MCP4901/4911/4921
NOTES:
DS22248A-page 26
2010 Microchip Technology Inc.
MCP4901/4911/4921
6.0 TYPICAL APPLICATIONS
VDD C1 = 10 F C2 = 0.1 F VDD C1 VREF MCP49X1 VOUT C1 SDI C2 C1 VDD C2 The MCP4901/4911/4921 family devices are general purpose DACs intended to be used in applications where precision with low-power and moderate bandwidth is required. Applications generally suited for the devices are: * * * * * Set Point or Offset Trimming Sensor Calibration Digitally-Controlled Multiplier/Divider Portable Instrumentation (Battery Powered) Motor Control Feedback Loop
CS1
6.1
Digital Interface
VREF MCP49X1 SDI AVSS SDO SCK LDAC CS0 AVSS
The MCP4901/4911/4921 devices utilize a 3-wire synchronous serial protocol to transfer the DAC's setup and output values from the digital source. The serial protocol can be interfaced to SPI or Microwire peripherals that are common on many microcontrollers, including Microchip's PIC(R) MCUs and dsPIC(R) DSCs. In addition to the three serial connections (CS, SCK and SDI), the LDAC pin synchronizes the analog output (VOUT) with the pin event. By bringing the LDAC pin down "low", the DAC input code and settings in the input register are latched into the output register, and the analog output is updated. Figure 6-1 shows an example of the pin connections. Note that the LDAC pin can be tied low (VSS) to reduce the required connections from 4 to 3 I/O pins. In this case, the DAC output can be immediately updated when a valid 16-clock transmission has been received and CS pin has been raised.
VOUT
VSS
FIGURE 6-1: Diagram.
Typical Connection
6.3
Layout Considerations
6.2
Power Supply Considerations
The typical application will require a bypass capacitor in order to filter high-frequency noise. The noise can be induced onto the power supply's traces from various events such as digital switching or as a result of changes on the DAC's output. The bypass capacitor helps to minimize the effect of these noise sources. Figure 6-1 illustrates an appropriate bypass strategy. In this example, two bypass capacitors are used in parallel: (a) 0.1 F (ceramic) and (b) 10 F (tantalum). These capacitors should be placed as close to the device power pin (VDD) as possible (within 4 mm). The power source supplying these devices should be as clean as possible. If the application circuit has separate digital and analog power supplies, VDD and VSS should reside on the analog plane.
Inductively-coupled AC transients and digital switching noises can degrade the input and output signal integrity, potentially reducing the device's performance. Careful board layout will minimize these effects and increase the Signal-to-Noise Ratio (SNR). Bench testing has shown that a multi-layer board utilizing a low-inductance ground plane, isolated inputs, and isolated outputs with proper decoupling, is critical for best performance. Particularly harsh environments may require shielding of critical signals. Breadboards and wire-wrapped boards are not recommended if low noise is desired.
2010 Microchip Technology Inc.
DS22248A-page 27
PIC(R) Microcontroller
MCP4901/4911/4921
6.4 Single-Supply Operation
6.4.1.1 Decreasing Output Step Size
The MCP4901/4911/4921 devices are rail-to-rail voltage output DAC devices designed to operate with a VDD range of 2.7V to 5.5V. Its output amplifier is robust enough to drive small signal loads directly. Therefore, it does not require an external output buffer for most applications. If the application is calibrating the bias voltage of a diode or transistor, a bias voltage range of 0.8V may be desired with about 200 V resolution per step. Two common methods to achieve a 0.8V range is to either reduce VREF to 0.82V or use a voltage divider on the DAC's output. Using a VREF is an option if the VREF is available with the desired output voltage range. However, occasionally, when using a low-voltage VREF, the noise floor causes an SNR error that is intolerable. Using a voltage divider method is another option and provides some advantages when VREF needs to be very low or when the desired output voltage is not available. In this case, a larger value VREF is used while two resistors scale the output range down to the precise desired level. Example 6-1 illustrates this concept. Note that the bypass capacitor on the output of the voltage divider plays a critical function in attenuating the output noise of the DAC and the induced noise from the environment.
6.4.1
DC SET POINT OR CALIBRATION
A common application for DAC devices is digitally-controlled set points and/or calibration of variable parameters, such as sensor offset or slope. For example, the MCP4921 and MCP4922 provide 4096 output steps. If the external voltage reference (VREF) is 4.096V, the LSb size is 1 mV. If a smaller output step size is desired, a lower external voltage reference is needed.
(a) Single Output DAC:
MCP4901 MCP4911 MCP4921
VDD
(b) Dual Output DAC:
MCP4902 MCP4912 MCP4922
VDD VREF VOUT R1
RSENSE
VCC+ VO Comparator VTRIP VCC-
DAC
R2 SPI 3-wire Dn V OUT = V REF G -----N 2 R2 Vtrip = V OUT -------------------- R1 + R2
0.1 uF
G = Gain selection (1x or 2x) Dn = Digital value of DAC (0-255) for MCP4901/MCP4902 = Digital value of DAC (0-1023) for MCP4911/MCP4912 = Digital value of DAC (0-4095) for MCP4921/MCP4922 N = DAC Bit Resolution
EXAMPLE 6-1:
EXAMPLE CIRCUIT OF SET POINT OR THRESHOLD CALIBRATION.
DS22248A-page 28
2010 Microchip Technology Inc.
MCP4901/4911/4921
6.4.1.2 Building a "Window" DAC
When calibrating a set point or threshold of a sensor, typically only a small portion of the DAC output range is utilized. If the LSb size is adequate enough to meet the application's accuracy needs, the unused range is sacrificed without consequences. If greater accuracy is needed, then the output range will need to be reduced to increase the resolution around the desired threshold. (a) Single Output DAC:
MCP4901 MCP4911 MCP4921
If the threshold is not near VREF or VSS, then creating a "window" around the threshold has several advantages. One simple method to create this "window" is to use a voltage divider network with a pull-up and pull-down resistor. Example 6-2 and Example 6-4 illustrate this concept.
(b) Dual Output DAC:
MCP4902 MCP4912 MCP4922
VCC+ R3 R1
Rsense
VCC+
VREF
VDD Comparator Vtrip 0.1 F VCCVCCVOUT
DAC
R2 SPI 3
Dn V OUT = VREF G -----N 2 G = Gain selection (1x or 2x) Dn = Digital value of DAC (0-255) for MCP4901/MCP4902 = Digital value of DAC (0-1023) for MCP4911/MCP4912 = Digital value of DAC (0-4095) for MCP4921/MCP4922 N = DAC Bit Resolution
Thevenin Equivalent
R 2 R3 R 23 = -----------------R2 + R 3 V CC+ R2 + VCC- R3 V 23 = ---------------------------------------------------R 2 + R3 V OUT R23 + V 23 R1 V trip = ------------------------------------------R 2 + R23
R1 VOUT VO R23 V23
EXAMPLE 6-2:
SINGLE-SUPPLY "WINDOW" DAC.
2010 Microchip Technology Inc.
DS22248A-page 29
MCP4901/4911/4921
6.5 Bipolar Operation
Bipolar operation is achievable using the MCP4901/ 4911/4921 family devices by using an external operational amplifier (op amp). This configuration is desirable due to the wide variety and availability of op amps. This allows a general purpose DAC, with its cost and availability advantages, to meet almost any desired output voltage range, power and noise performance. (a) Single Output DAC:
MCP4901 MCP4911 MCP4921
Example 6-3 illustrates a simple bipolar voltage source configuration. R1 and R2 allow the gain to be selected, while R3 and R4 shift the DAC's output to a selected offset. Note that R4 can be tied to VREF instead of VSS if a higher offset is desired. Note that a pull-up to VREF could be used, instead of R4, if a higher offset is desired.
VREF VREF VDD VOUT DAC R4 SPI 3 R3 R1 VIN+ VCC- 0.1 F VCC+ VO
(b) Dual Output DAC:
MCP4902 MCP4912 MCP4922
Dn VOUT = V REF G -----N 2 VIN+ V OUT R4 = ------------------R3 + R 4
R2 R2 VO = V IN+ 1 + ----- - VDD ----- R 1 R 1
G = Gain selection (1x or 2x) Dn = Digital value of DAC (0 - 255) for MCP4901/MCP4902 = Digital value of DAC (0 - 1023) for MCP4911/MCP4912 = Digital value of DAC (0 - 4095) for MCP4921/MCP4922 N = DAC Bit Resolution
EXAMPLE 6-3:
6.5.1
DIGITALLY-CONTROLLED BIPOLAR VOLTAGE SOURCE.
4. Next, solve for R3 and R4 by setting the DAC to 4096, knowing that the output needs to be +2.05V. R4 2.05V + 0.5V REF 2 ---------------------- = ----------------------------------------- = -1.5VREF R3 + R 4 3 If R4 = 20 k, then R3 = 10 k
DESIGN EXAMPLE: DESIGN A BIPOLAR DAC USING EXAMPLE 6-3 WITH 12-BIT MCP4912 OR MCP4922
An output step magnitude of 1 mV with an output range of 2.05V is desired for a particular application. The following steps show the details: 1. Calculate the range: +2.05V - (-2.05V) = 4.1V. 2. Calculate the resolution needed: 4.1V/1 mV = 4100 Since 212 = 4096, 12-bit resolution is desired. 3. The amplifier gain (R2/R1), multiplied by VREF, must be equal to the desired minimum output to achieve bipolar operation. Since any gain can be realized by choosing resistor values (R1 + R2), the VREF source needs to be determined first. If a VREF of 4.1V is used, solve for the gain by setting the DAC to 0, knowing that the output needs to be -2.05V. The equation can be simplified to: - R2 - 2.05 - 2.05 -------- = ------------ = -----------R1 V REF 4.1 R2 1 ----- = -R1 2
If R1 = 20 k and R2 = 10 k, the gain will be 0.5
DS22248A-page 30
2010 Microchip Technology Inc.
MCP4901/4911/4921
6.6 Selectable Gain and Offset Bipolar Voltage Output Using DAC Devices
This circuit is typically used in Multiplier mode and is ideal for linearizing a sensor whose slope and offset varies. Refer to Section 6.9 "Using Multiplier Mode" for more information on Multiplier mode. The equation to design a bipolar "window" DAC would be utilized if R3, R4 and R5 are populated.
In some applications, precision digital control of the output range is desirable. Example 6-4 illustrates how to use the DAC devices to achieve this in a bipolar or single-supply application.
R2 VREFA VDD VOUTA DACA VREFB VDD DACA (Gain Adjust) VOUTB DACB SPI 3 VCC- DA VOUTA = V REFA G A -----N 2 DB V OUTB = VREFB G B -----N 2 VOUTB R 4 + VCC- R3 V IN+ = ----------------------------------------------R3 + R4 R2 R2 V O = V IN+ 1 + ----- - V OUTA ----- R 1 R
1
R1 VCC+ R5
VCC+
VO
R3
DACB (Offset Adjust)
R4
0.1uF
VCC-
GX = Gain selection (1x or 2x) N = DAC Bit Resolution DA, DB = Digital value of DAC (0-255) for MCP4901/MCP4902 = Digital value of DAC (0-1023) for MCP4911/MCP4912 = Digital value of DAC (0-4095) for MCP4912/MCP4922
Offset Adjust Gain Adjust Bipolar "Window" DAC using R4 and R5 Thevenin Equivalent V CC+ R4 + V CC- R 5 V45 = ------------------------------------------R4 + R5 VOUTB R 45 + V45 R 3 V IN+ = ---------------------------------------------R3 + R 45 R4 R5 R 45 = -----------------R4 + R5 R2 R2 V O = VIN+ 1 + ----- - V OUTA ----- R 1 R 1 Offset Adjust Gain Adjust
EXAMPLE 6-4:
BIPOLAR VOLTAGE SOURCE WITH SELECTABLE GAIN AND OFFSET.
2010 Microchip Technology Inc.
DS22248A-page 31
MCP4901/4911/4921
6.7 Designing a Double-Precision DAC
1. Calculate the resolution needed: 4.1V/1 V = 4.1x 106. Since 222 = 4.2 x 106, 22-bit resolution is desired. Since DNL = 0.75 LSB, this design can be done with the MCP4921 or MCP4922. Since the DACB`s VOUTB has a resolution of 1 mV, its output only needs to be "pulled" 1/1000 to meet the 1 V target. Dividing VOUTA by 1000 would allow the application to compensate for DACB's DNL error. If R2 is 100, then R1 needs to be 100 k. The resulting transfer function is not perfectly linear, as shown in the equation of Example 6-5.
Example 6-5 illustrates how to design a single-supply voltage output capable of up to 24-bit resolution by using 12-bit DACs. This design is simply a voltage divider with a buffered output. As an example, if a similar application to the one developed in Section 6.5.1 "Design Example: Design a bipolar dac using example 6-3 with 12-bit MCP4912 or MCP4922" required a resolution of 1 V instead of 1 mV and a range of 0V to 4.1V, then 12-bit resolution would not be adequate.
2.
3. 4.
VREF
VDD VOUTA
VCC+ VO DACA (Fine Adjust) R1 >> R2 VOUTB DACB (Course Adjust) R2 0.1 F VCC- R1
DACA
VDD
DACB
SPI 3
DA V OUTA = VREFA GA ------12 2 VOUTA R 2 + VOUTB R 1 V O = ----------------------------------------------------R 1 + R2 DB V OUTB = VREFB GB ------12 2
G = Gain selection (1x or 2x) D = Digital value of DAC (0-4096)
EXAMPLE 6-5:
SIMPLE, DOUBLE PRECISION DAC WITH MCP4921 OR MCP4922.
DS22248A-page 32
2010 Microchip Technology Inc.
MCP4901/4911/4921
6.8 Building Programmable Current Source
When working with very small sensor voltages, plan on eliminating the amplifier's offset error by storing the DAC's setting under known sensor conditions.
Example 6-6 shows an example for building a programmable current source using a voltage follower. The current sensor (sensor resistor) is used to convert the DAC voltage output into a digitally-selectable current source. Adding the resistor network from Example 6-2 would be advantageous in this application. The smaller Rsense is, the less power is dissipated across it. However, this also reduces the resolution that the current can be controlled with. The voltage divider, or "window", DAC configuration would allow the range to be reduced, thus increasing the resolution around the range of interest.
VDD or VREF (a) Single Output DAC:
MCP4901 MCP4911 MCP4921
VREF
VDD VCC+ VOUT
Load IL Ib
DAC
SPI 3-wire VCC-
(b) Dual Output DAC:
MCP4902 MCP4912 MCP4922
RSENSE
IL Ib = --- VOUT IL = -------------- ----------R sense + 1 where Common-Emitter Current Gain Dn VOUT = V REF G -----N 2 G = Gain select (1x or 2x) Dn = Digital value of DAC (0-255) for MCP4901/MCP4902 = Digital value of DAC (0-1023) for MCP4911/MCP4912 = Digital value of DAC (0-4095) for MCP4921/MCP4922 N = DAC Bit Resolution
EXAMPLE 6-6:
DIGITALLY-CONTROLLED CURRENT SOURCE.
2010 Microchip Technology Inc.
DS22248A-page 33
MCP4901/4911/4921
6.9 Using Multiplier Mode
The MCP4901/4911/4921 and MCP4902/MCP4912/ MCP4922 family devices use external reference, and these devices are ideally suited for use as a multiplier/ divider in a signal chain. Common applications are: (a) precision programmable gain/attenuator amplifiers and (b) motor control feedback loops. The wide input range (0V - VDD) is in Unbuffered mode, and near rail-to-rail range in Buffered mode. Its bandwidth (> 400 kHz), selectable 1x/2x gain and low power consumption give maximum flexibility to meet the application's needs. To configure the device for multiplier applications, connect the input signal to VREF and serially configure the DAC's input buffer, gain and output value. The DAC's output can utilize any of the examples from 6-1 to 6-6, depending on the application requirements. Example 6-7 is an illustration of how the DAC can operate in a motor control feedback loop. If the gain selection bit is configured for 1x mode ( = 1), the resulting input signal will be attenuated by D/2n. With the 12-bit DAC (MCP4921 or MCP4922), if the gain is configured for 2x mode ( = 0), codes less than 2048 attenuate the signal, while codes greater than 2048 gain the signal. A DAC provides significantly more gain/attenuation resolution when compared to typical programmable gain amplifiers. Adding an op amp to buffer the output, as illustrated in Examples 6-2 through 6-6, extends the output range and power to meet the precise needs of the application.
VRPM_SET VRPM (a) Single Output DAC:
MCP4901 MCP4911 MCP4921
VDD VREF SPI 3
ZFB VOUT VCC+ +
(b) Dual Output DAC:
MCP4902 MCP4912 MCP4922
DAC
- VCC- Rsense
Dn V OUT = V REF G -----N 2
EXAMPLE 6-7:
MULTIPLIER MODE USING VREF INPUT.
DS22248A-page 34
2010 Microchip Technology Inc.
MCP4901/4911/4921
7.0
7.1
DEVELOPMENT SUPPORT
Evaluation & Demonstration Boards
The Mixed Signal PICtailTM Board supports the MCP4901/4911/4921 family of devices. Please refer to www.microchip.com for further information on this product's capabilities and availability.
2010 Microchip Technology Inc.
DS22248A-page 35
MCP4901/4911/4921
NOTES:
DS22248A-page 36
2010 Microchip Technology Inc.
MCP4901/4911/4921
8.0
8.1
PACKAGING INFORMATION
Package Marking Information
8-Lead DFN (2x3) Example:
XXX YWW NN
AHS 010 25
8-Lead MSOP XXXXXX YWWNNN
Example: 4901E 010256
8-Lead PDIP (300 mil) XXXXXXXX XXXXXNNN YYWW
Example: MCP4901 E/P e3 256 1010
8-Lead SOIC (150 mil) XXXXXXXX XXXXYYWW NNN
Example: MCP4901E SN e3 1010 256
Legend: XX...X Y YY WW NNN
e3
*
Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week `01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator ( e3 ) can be found on the outer packaging for this package.
Note:
In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.
2010 Microchip Technology Inc.
DS22248A-page 37
MCP4901/4911/4921
/HDG 3ODVWLF 'XDO )ODW 1R /HDG 3DFNDJH 0& [ [
1RWH
PP %RG\ >')1@
)RU WKH PRVW FXUUHQW SDFNDJH GUDZLQJV SOHDVH VHH WKH 0LFURFKLS 3DFNDJLQJ 6SHFLILFDWLRQ ORFDWHG DW KWWS ZZZ PLFURFKLS FRP SDFNDJLQJ
e b N L
D N
K E E2
EXPOSED PAD NOTE 1 1 2 D2 TOP VIEW BOTTOM VIEW 2 1 NOTE 1
A
A3
A1
NOTE 2
8QLWV 'LPHQVLRQ /LPLWV 0,1 0,//,0(7(56 120 %6& 0$;
1XPEHU RI 3LQV 3LWFK 2YHUDOO +HLJKW 6WDQGRII &RQWDFW 7KLFNQHVV 2YHUDOO /HQJWK 2YHUDOO :LGWK ([SRVHG 3DG /HQJWK ([SRVHG 3DG :LGWK &RQWDFW :LGWK &RQWDFW /HQJWK &RQWDFW WR ([SRVHG 3DG
1 H $ $ $ ' ( ' ( E / . 5() %6& %6&
1RWHV 3LQ YLVXDO LQGH[ IHDWXUH PD\ YDU\ EXW PXVW EH ORFDWHG ZLWKLQ WKH KDWFKHG DUHD 3DFNDJH PD\ KDYH RQH RU PRUH H[SRVHG WLH EDUV DW HQGV 3DFNDJH LV VDZ VLQJXODWHG 'LPHQVLRQLQJ DQG WROHUDQFLQJ SHU $60( < 0 %6& %DVLF 'LPHQVLRQ 7KHRUHWLFDOO\ H[DFW YDOXH VKRZQ ZLWKRXW WROHUDQFHV 5() 5HIHUHQFH 'LPHQVLRQ XVXDOO\ ZLWKRXW WROHUDQFH IRU LQIRUPDWLRQ SXUSRVHV RQO\
0LFURFKLS 7HFKQRORJ\ 'UDZLQJ &
&
DS22248A-page 38
2010 Microchip Technology Inc.
MCP4901/4911/4921
/HDG 3ODVWLF 'XDO )ODW 1R /HDG 3DFNDJH 0& [ [
1RWH
PP %RG\ >')1@
)RU WKH PRVW FXUUHQW SDFNDJH GUDZLQJV SOHDVH VHH WKH 0LFURFKLS 3DFNDJLQJ 6SHFLILFDWLRQ ORFDWHG DW KWWS ZZZ PLFURFKLS FRP SDFNDJLQJ
2010 Microchip Technology Inc.
DS22248A-page 39
MCP4901/4911/4921
/HDG 3ODVWLF 0LFUR 6PDOO 2XWOLQH 3DFNDJH 06 >0623@
1RWH )RU WKH PRVW FXUUHQW SDFNDJH GUDZLQJV SOHDVH VHH WKH 0LFURFKLS 3DFNDJLQJ 6SHFLILFDWLRQ ORFDWHG DW KWWS ZZZ PLFURFKLS FRP SDFNDJLQJ
D N
E E1
NOTE 1 1 2 e b A2 c
A
A1
8QLWV 'LPHQVLRQ /LPLWV 1XPEHU RI 3LQV 3LWFK 2YHUDOO +HLJKW 0ROGHG 3DFNDJH 7KLFNQHVV 6WDQGRII 2YHUDOO :LGWK 0ROGHG 3DFNDJH :LGWK 2YHUDOO /HQJWK )RRW /HQJWK )RRWSULQW )RRW $QJOH /HDG 7KLFNQHVV 1 H $ $ $ ( ( ' / / I F
L1
0,//,0(7(56 0,1 120 %6& %6& %6& %6& 5() 0$;
L
/HDG :LGWK E 1RWHV 3LQ YLVXDO LQGH[ IHDWXUH PD\ YDU\ EXW PXVW EH ORFDWHG ZLWKLQ WKH KDWFKHG DUHD 'LPHQVLRQV ' DQG ( GR QRW LQFOXGH PROG IODVK RU SURWUXVLRQV 0ROG IODVK RU SURWUXVLRQV VKDOO QRW H[FHHG 'LPHQVLRQLQJ DQG WROHUDQFLQJ SHU $60( < 0 %6& %DVLF 'LPHQVLRQ 7KHRUHWLFDOO\ H[DFW YDOXH VKRZQ ZLWKRXW WROHUDQFHV 5() 5HIHUHQFH 'LPHQVLRQ XVXDOO\ ZLWKRXW WROHUDQFH IRU LQIRUPDWLRQ SXUSRVHV RQO\
PP SHU VLGH
0LFURFKLS 7HFKQRORJ\ 'UDZLQJ &
%
DS22248A-page 40
2010 Microchip Technology Inc.
MCP4901/4911/4921
Note:
For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging
2010 Microchip Technology Inc.
DS22248A-page 41
MCP4901/4911/4921
/HDG 3ODVWLF 6PDOO 2XWOLQH 61 1DUURZ
1RWH
PP %RG\ >62,&@
)RU WKH PRVW FXUUHQW SDFNDJH GUDZLQJV SOHDVH VHH WKH 0LFURFKLS 3DFNDJLQJ 6SHFLILFDWLRQ ORFDWHG DW KWWS ZZZ PLFURFKLS FRP SDFNDJLQJ
D e N
E E1
NOTE 1 1 2 3 b h c h
A
A2
A1
L L1
8QLWV 'LPHQVLRQ /LPLWV 1XPEHU RI 3LQV 3LWFK 2YHUDOO +HLJKW 0ROGHG 3DFNDJH 7KLFNQHVV 6WDQGRII 2YHUDOO :LGWK 0ROGHG 3DFNDJH :LGWK 2YHUDOO /HQJWK &KDPIHU RSWLRQDO )RRW /HQJWK )RRWSULQW )RRW $QJOH /HDG 7KLFNQHVV /HDG :LGWK 0ROG 'UDIW $QJOH 7RS 0ROG 'UDIW $QJOH %RWWRP 1 H $ $ $ ( ( ' K / / I F E D E 0,1
0,//,0(7(56 120 %6& %6& %6& %6& 5() 0$;
1RWHV 3LQ YLVXDO LQGH[ IHDWXUH PD\ YDU\ EXW PXVW EH ORFDWHG ZLWKLQ WKH KDWFKHG DUHD 6LJQLILFDQW &KDUDFWHULVWLF 'LPHQVLRQV ' DQG ( GR QRW LQFOXGH PROG IODVK RU SURWUXVLRQV 0ROG IODVK RU SURWUXVLRQV VKDOO QRW H[FHHG 'LPHQVLRQLQJ DQG WROHUDQFLQJ SHU $60( < 0 %6& %DVLF 'LPHQVLRQ 7KHRUHWLFDOO\ H[DFW YDOXH VKRZQ ZLWKRXW WROHUDQFHV 5() 5HIHUHQFH 'LPHQVLRQ XVXDOO\ ZLWKRXW WROHUDQFH IRU LQIRUPDWLRQ SXUSRVHV RQO\
PP SHU VLGH
0LFURFKLS 7HFKQRORJ\ 'UDZLQJ &
%
DS22248A-page 42
2010 Microchip Technology Inc.
MCP4901/4911/4921
/HDG 3ODVWLF 6PDOO 2XWOLQH 61 1DUURZ
1RWH
PP %RG\ >62,&@
)RU WKH PRVW FXUUHQW SDFNDJH GUDZLQJV SOHDVH VHH WKH 0LFURFKLS 3DFNDJLQJ 6SHFLILFDWLRQ ORFDWHG DW KWWS ZZZ PLFURFKLS FRP SDFNDJLQJ
2010 Microchip Technology Inc.
DS22248A-page 43
MCP4901/4911/4921
/HDG 3ODVWLF 'XDO ,Q /LQH 3
1RWH
PLO %RG\ >3',3@
)RU WKH PRVW FXUUHQW SDFNDJH GUDZLQJV SOHDVH VHH WKH 0LFURFKLS 3DFNDJLQJ 6SHFLILFDWLRQ ORFDWHG DW KWWS ZZZ PLFURFKLS FRP SDFNDJLQJ
N
NOTE 1 E1
1
2 D
3 E
A
A2
A1
L
c
e b1 b
8QLWV 'LPHQVLRQ /LPLWV 1XPEHU RI 3LQV 3LWFK 7RS WR 6HDWLQJ 3ODQH 0ROGHG 3DFNDJH 7KLFNQHVV %DVH WR 6HDWLQJ 3ODQH 6KRXOGHU WR 6KRXOGHU :LGWK 0ROGHG 3DFNDJH :LGWK 2YHUDOO /HQJWK 7LS WR 6HDWLQJ 3ODQH /HDG 7KLFNQHVV 8SSHU /HDG :LGWK /RZHU /HDG :LGWK 2YHUDOO 5RZ 6SDFLQJ 1 H $ $ $ ( ( ' / F E E H% %6& 0,1
eB
,1&+(6 120 0$;
1RWHV 3LQ YLVXDO LQGH[ IHDWXUH PD\ YDU\ EXW PXVW EH ORFDWHG ZLWK WKH KDWFKHG DUHD 6LJQLILFDQW &KDUDFWHULVWLF 'LPHQVLRQV ' DQG ( GR QRW LQFOXGH PROG IODVK RU SURWUXVLRQV 0ROG IODVK RU SURWUXVLRQV VKDOO QRW H[FHHG 'LPHQVLRQLQJ DQG WROHUDQFLQJ SHU $60( < 0 %6& %DVLF 'LPHQVLRQ 7KHRUHWLFDOO\ H[DFW YDOXH VKRZQ ZLWKRXW WROHUDQFHV
SHU VLGH
0LFURFKLS 7HFKQRORJ\ 'UDZLQJ &
%
DS22248A-page 44
2010 Microchip Technology Inc.
MCP4901/4911/4921
APPENDIX A: REVISION HISTORY
Revision A (April 2010)
* Original Release of this Document.
2010 Microchip Technology Inc.
DS22248A-page 45
MCP4901/4911/4921
NOTES:
DS22248A-page 46
2010 Microchip Technology Inc.
MCP4901/4911/4921
PRODUCT IDENTIFICATION SYSTEM
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office. PART NO. Device X Temperature Range /XX Package Examples: a) b)
Device
MCP4901: 8-Bit Voltage Output DAC MCP4901T: 8-Bit Voltage Output DAC (Tape and Reel) MCP4911: 10-Bit Voltage Output DAC MCP4911T: 10-Bit Voltage Output DAC (Tape and Reel) MCP4921: 12-Bit Voltage Output DAC MCP4921T: 12-Bit Voltage Output DAC (Tape and Reel)
E = -40C to +125C (Extended)
c)
d) e)
f)
Temperature Range
g)
Package
MC MS SN P
= = = =
8-Lead Plastic Dual Flat, No Lead Package 2x3x0.9 mm Body (DFN) 8-Lead Plastic Micro Small Outline (MSOP) 8-Lead Plastic Small Outline - Narrow, 150 mil (SOIC) 8-Lead Plastic Dual In-Line (PDIP)
Extended temperature, PDIP package. MCP4901-E/SN: Extended temperature, SOIC package. MCP4901T-E/SN: Extended temperature, SOIC package Tape and Reel. MCP4901-E/MS: Extended temperature, MSOP package. MCP4901T-E/MS: Extended temperature, MSOP package Tape and Reel. MCP4901-E/MC: Extended temperature, DFN package. MCP4901T-E/MC:Extended temperature, DFN package Tape and Reel. Extended temperature, PDIP package. MCP4911-E/SN: Extended temperature, SOIC package. MCP4911T-E/SN: Extended temperature, SOIC package Tape and Reel. MCP4911-E/MS: Extended temperature, MSOP package. MCP4911T-E/MS: Extended temperature, MSOP package Tape and Reel. MCP4911-E/MC: Extended temperature, DFN package. MCP4911T-E/MC: Extended temperature, DFN package Tape and Reel.
MCP4911-E/P:
MCP4901-E/P:
h) i) j)
k) l)
m) n)
o) p) q)
r) s)
t) u)
Extended temperature, PDIP package. MCP4921-E/SL: Extended temperature, SOIC package. MCP4921T-E/SL: Extended temperature, SOIC package Tape and Reel. MCP4921-E/MS: Extended temperature, MSOP package. MCP4921T-E/MS: Extended temperature, MSOP package Tape and Reel. MCP4921-E/MC: Extended temperature, DFN package. MCP4921T-E/MC:Extended temperature, DFN package Tape and Reel.
MCP4921-E/P:
2010 Microchip Technology Inc.
DS22248A-page 47
MCP4901/4911/4921
NOTES:
DS22248A-page 48
2010 Microchip Technology Inc.
Note the following details of the code protection feature on Microchip devices: * * Microchip products meet the specification contained in their particular Microchip Data Sheet. Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions. There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property. Microchip is willing to work with the customer who is concerned about the integrity of their code. Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."
*
* *
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.
Trademarks The Microchip name and logo, the Microchip logo, dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC32 logo, rfPIC and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A. Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Octopus, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. SQTP is a service mark of Microchip Technology Incorporated in the U.S.A. All other trademarks mentioned herein are property of their respective companies. (c) 2010, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved. Printed on recycled paper.
ISBN:
Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC(R) MCUs and dsPIC(R) DSCs, KEELOQ(R) code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.
2010 Microchip Technology Inc.
DS22248A-page 49
WORLDWIDE SALES AND SERVICE
AMERICAS
Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://support.microchip.com Web Address: www.microchip.com Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455 Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088 Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075 Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643 Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924 Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260 Kokomo Kokomo, IN Tel: 765-864-8360 Fax: 765-864-8387 Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445 Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509
ASIA/PACIFIC
Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755 China - Beijing Tel: 86-10-8528-2100 Fax: 86-10-8528-2104 China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889 China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500 China - Hong Kong SAR Tel: 852-2401-1200 Fax: 852-2401-3431 China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470 China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205 China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066 China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393 China - Shenzhen Tel: 86-755-8203-2660 Fax: 86-755-8203-1760 China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118 China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256 China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130 China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049
ASIA/PACIFIC
India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123 India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632 India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513 Japan - Yokohama Tel: 81-45-471- 6166 Fax: 81-45-471-6122 Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302 Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934 Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859 Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068 Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069 Singapore Tel: 65-6334-8870 Fax: 65-6334-8850 Taiwan - Hsin Chu Tel: 886-3-6578-300 Fax: 886-3-6578-370 Taiwan - Kaohsiung Tel: 886-7-536-4818 Fax: 886-7-536-4803 Taiwan - Taipei Tel: 886-2-2500-6610 Fax: 886-2-2508-0102 Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350
EUROPE
Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829 France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79 Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44 Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781 Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340 Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91 UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820
01/05/10
DS22248A-page 50
2010 Microchip Technology Inc.


▲Up To Search▲   

 
Price & Availability of MCP4911

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X